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Abstract 
 
A challenging requirement in wireless sensor 
networks is the deployment of nodes in a 
wireless sensor network to satisfy continuous 
sensing with extended network lifetime while 
maintaining uniform coverage in the 
deployment region. While dense random 
deployments satisfy coverage and sensing 
requirements, constructing dense networks of 
sensor nodes poses economical constraints as 
well as the problem of redundancy. We 
provide an analytical framework for 
estimating the redundancy in a random 
deployment of nodes without the need of 
location information of nodes. We use an 
information theoretic approach to estimate 
the redundancy in a randomly deployed 
wireless sensor network and provide the 
Cramer-Rao bound on the error in estimating 
the redundancy in a wireless sensor network. 
We illustrate this redundancy estimation 
approach and calculate the bounds on the 
error in estimating the redundancy for a 
wireless sensor network with 1-redundancy. 
We also analytically show the inter-
dependence between redundancy and network 
lifetime for random deployment. 
 
1. Introduction 
 

Advances in miniaturization, embedded 
systems and wireless communications have 
significantly contributed to the success of WSNs 
for large-scale, low power networked sensing 
and data processing. A key challenge in WSN is 
the deployment of nodes to satisfy the 
requirements of higher network lifetime with 
continuous coverage of the deployment region 
for reliable sensing. While continuous coverage 
and connectivity lead to higher reliability of 
sensing operation, it takes a toll on the battery 
life of individual nodes and consequently 

reducing network lifetime. One way of balancing 
this tradeoff is deploying more sensors than are 
required to cover the deployment region. While 
this redundancy approach can be used to increase  
network lifetime by the use of sleep-scheduling 
and power-aware routing protocols, the 
economic constraints of deploying large number 
of nodes poses a limitation.  

The problem of deployment has been 
widely studied in the context of providing 
uniform coverage, connectivity and redundancy 
while optimizing the number of sensor nodes 
required for the sensing operation [1, 2]. The 
random placement of nodes is preferred over the 
deterministic placement approach for remote and 
hostile environments, where it is not possible to 
place sensors in a particular pattern to cover the 
entire deployment region, for example, forest 
ecology sensing environments.  Deployment for 
such applications is carried out by randomly 
scattering the nodes over the deployment region. 
While this approach has the advantage of 
eliminating the overhead of planning and 
deterministic placement, it also gives rise to the 
problem of not knowing the density and location 
of sensors in the deployment region. In addition, 
some network operations require higher density 
of sensors in regions of high-interest 
phenomenon. Since equipping nodes with 
location detecting GPS receivers is expensive 
and we do not know the precise location of 
sensors due to the random deployment, we need 
to be able to estimate the probability density 
function (PDF) of node distribution over the 
placement region and calculate the redundancy 
of nodes. The nodes can then be instructed to 
follow some degree of sleep-awake duty cycle to 
satisfy the requirements of sensing for that area 
of the deployment region while also contributing 
to higher network lifetime.  

The problem we study can hence be 
modeled as follows: In a wireless sensor network 
of randomly deployed, stationary, power-limited, 



homogenous sensor nodes designed to be 
operational for at least time T, where we have no 
location information, how do we estimate the 
redundancy of nodes in the network? The time 
constraint T ensures that all nodes in the network 
are designed to perform sensing and data 
processing without loss of battery energy for at 
least entire duration T, thus increasing reliability 
of system operation. One way of doing this 
would be intelligent processing at the nodes to 
discover the number of neighbors in their one-
hop sensing range and calculating the 
redundancy. However, this approach, calls for 
higher number of transmissions at every node to 
discover the number of neighbors, which leads to 
increase in the depletion of battery energy for the 
energy-constrained nodes. Another way of 
estimating the redundancy would be from an 
analysis of the node deployment strategy. While 
this approach eliminates the need for sensors to 
discover the level of redundancy in their 
neighborhood, it results in greater variance of the 
error in estimating the redundancy due to the 
uncertainty of the deployment strategy 
information. In this paper, we propose an 
information theoretic approach to estimate the 
redundancy in a randomly deployed network. 
Every node transmits its node ID to the base 
station in the initial phase of the network 
operation. From these transmissions, the base 
station gathers the node IDs and the signal 
strength information. The signal strength data is 
used to estimate the PDF ( )p xX  of the node 
distribution over the deployment region using the 
MinMax measure [3]. We then decompose this 
PDF ( )p xX  into a primary distribution and an 
unknown number θ  of secondary distributions. 
This unknown parameter θ  is the redundancy 
that we estimate. Further, we provide bounds on 
the support of the random variable x that 
describes the PDF of the node distribution over 
the deployment region. Finally, we provide the 
Cramer-Rao lower bound and an upper bound 
using Barron’s proof [4] on the error in 
estimating the redundancy in the deployment 
region. 

In [5], the authors study redundancy in 
terms of redundant broadcasts as a consequence 
of broadcasting by flooding in a mobile ad hoc 
network. By simulation, they show that for k 
greater than or equal to four neighbors, the 
expected additional coverage is below 0.05 %, 
i.e. benefit of rebroadcast is small. In [6], the 
authors analyze sensor redundancy by finding 
bounds on the neighbor set of a sensor node. 

They provide an analytic framework to 
determine the percentage of redundant area with 
n number of neighbors and the probability that a 
node is completely redundant. Specifically, they 
show that if a sensor is completely redundant, at 
least three and at most five neighbors are needed 
to cover its sensing area. The analytical model 
developed in [6] shows that for a 90 % partial 
redundancy, i.e. requiring 90% of its sensing 
area to be covered, needs five neighbors, which 
is similar to the simulation results obtained in 
[5]. Our work differs in that we do not require 
the sensors to be aware of the number of 
neighbors in their sensing range and thereby 
eliminate the need for processing and storage of 
the information related to neighbor discovery.  

The rest of the paper is organized as 
follows: Section 2 presents the preliminaries for 
the WSN model and the PDF estimation 
technique based on the MinMax measure [3]. In 
section 3, we develop the analytical model to 
obtain the bounds on the Fisher information and 
the Cramer-Rao bounds for the error in 
estimating the redundancy parameter. We 
illustrate our approach with a case of 1-
redundancy in the deployment region. Section 4 
discusses the variation of error bounds of 
redundancy estimation and validates the 
relationship between redundancy and network 
lifetime. Section 5 concludes the paper and 
presents directions for future research. 
 
2. Preliminaries 
 
We assume a dense wireless sensor network of 
homogenous, stationary, power limited sensor 
nodes densely and randomly deployed over the 
deployment region designed to operate for at 
least T time units. This time constraint on 
operation ensures that the resulting deployment 
and operation of the network is reliable for the 
desired interval. The problem is to estimate the 
redundancy in such a deployment without the 
knowledge of location information of sensor 
nodes. We assume that the base station initiates a 
phase of node-discovery, where it broadcasts a 
query transmission asking every node to respond 
to the base station with its node ID. From the 
signal strength of the transmissions of the nodes 
transmitting their node IDs, the base station 
obtains the relative location of the nodes in the 
deployment region. This problem is known as 
the direct problem [3], which refers to the 
problem of finding the initial probability 
assignment consistent with available information 
about a probabilistic system. In our problem 



formulation, the signal strength of individual 
transmissions comprises the available 
information about the node locations in the 
deployment region. The signal strength 
information constitutes the sample data and is 
used to estimate the PDF of node distribution 
over the deployment region. In this paper, we use 
the approach developed in [3] to obtain the PDF.   
We refer the reader to [3] for a detailed 
explanation of the approach. We proceed to 
estimate the redundancy of nodes in the 
deployment region from the PDF of the node 
location. We introduce the following definitions 
to aid in the redundancy calculations: 
Primary distribution: The primary distribution 
refers to the PDF of sensor nodes’ distribution 
that is necessary and sufficient to provide 
coverage and connectivity in the deployment 
region. The primary distribution ensures 
continuous sensing throughout the deployment 
region.  
Secondary distributions: In order to provide 
continuous sensing in spite of battery exhaustion 
or device failure in nodes belonging to the 
primary distribution, as well as to improve the 
reliability of the sensing operation, we deploy 
additional nodes over the deployment region. 
The distribution of these redundant nodes has a 
PDF called the secondary distribution. 
Depending on the sensing requirements, 
minimum network lifetime constraints and the 
economic constraints and resources available for 
the sensing operation, we can deploy k 
distributions of sensor nodes in addition to the 
primary distribution over the deployment region 
resulting in k-redundancy. 

The final step in the problem of 
redundancy estimation would be to estimate the 
number of secondary distributions (redundancy) 
over the deployment region from the initial 
sample set of signal strengths that provides the 
relative location of nodes in the deployment 
region. We also provide Cramer-Rao bounds on 
the error in estimating the redundancy in the 
deployment.  To do this, we determine the Fisher 
information of the redundancy parameter θ, 
which is obtained from the estimated PDF 
(solution to the direct problem). This is a more 
general version of the redundancy estimation 
problem [6] in the absence of location 
information. Our results bring insight into the 
general problem of redundancy in dense, large 
WSNs where the estimate of redundant 
distributions can be useful to selectively power 
down or sleep schedule nodes in certain 
distributions to satisfy lifetime constraints or 

increase the density of sensing operation in high 
interest areas of the deployment region. The 
advantage of this approach lies in the fact that 
nodes do not need to possess computational 
complexity to process information about their 
neighbors to calculate redundancy in their 
coverage areas. The base station performs the 
processing to determine the redundancy in the 
entire deployment region. This approach can also 
be used to control the density of ‘awake’ nodes 
in sections of the deployment region by applying 
the redundancy processing approach to specific 
areas that exhibit high interest phenomenon.  
 
3. Cramer-Rao bounds in error in 
redundancy estimation using the 
Fisher information of redundancy 
 

To illustrate this method of estimating 
redundancy, we assume a primary distribution 
and a single secondary distribution of nodes over 
the deployment region, thus creating a 1-
redundant network of nodes.  
 
A. Bounds on the PDF of node 
distribution over the deployment region 
 

Let the primary distribution have a PDF 
( )p xS  and let the secondary distribution have a 

PDF ( )p xZ , where S is a random variable 
describing the primary distribution, and 

( )
X S Zs

τ
= +  describes the resultant distribution 

of all nodes in the deployment region. The 

secondary distribution ( )
Zs

τ  is a normal 
distributed random variable 

( )0,N τ∼ independent of S. Thus, X which 
denotes the PDF of all nodes in the entire 
deployment region is a perturbed random 
variable with continuously differentiable 
density ( )x

pX τ . Defining the score function as 
  

'
( ) ( ) / ( )x p x p xX X Xρ =    (1) 

 

and ( )2
p

τ  for the density of ( )2
S ZS

τ
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exists a constant [4]  
 

( ) /2
2 2 /,

k
c k ek ττ =    (2) 
 
such that for all x [4], 



( ) ( ) ( )2
( ) ( ),

k
p x x c p xX X k

ττ
ρ τ≤   (3) 

 
B. Illustration of the redundancy 
estimation approach for 1-redundancy  
 
A widely used assumption to model random 
deployment of nodes over a deployment region 
[1, 2] is the Poisson point process. Let the 
primary distribution ( )p xS  denote a Poisson 
point process of intensity λ .  
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x
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Since ( )
X S Zs

τ
= + ,  ( ) ( ) ( ) ( )p x p x p xX ZS

τ
= ⊗    (5) 

Using Fourier transforms to obtain the 

convolution, the PDF ( ) ( )p xX
τ is given by 
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The score function ( )xXρ  for (5) is given by 
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The density ( )2
p

τ  is obtained as follows 

( ) 12
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!
p x x
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πτ

τ
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Substituting (6) and (7) in (3) and simplifying we 
get the bounds on the density function of the 
nodes in the deployment region, 
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Substituting (5) in (8) to obtain the support for x, 
and evaluating t in the finite integral limits from 
0 to T , where T is defined as the minimum time 
for which the network is designed to be 
operational (i.e. no node has run out of battery 
energy), the support for x is given by, 

( )2
lnx T

eτ
≥ − −     (9) 

 
Next, we evaluate the Fisher information of the 
redundancy parameter θ . The Fisher 
information ( )J X  is given by the variance of the 
score function and satisfies the following bound 
for the random variables S and X [4], 
 

( )J X =
5.6582

( )E xX
e

ρ
τ

≤     (10) 

 
Substituting for eτ  from (9) in (10), 
 

( )J X =  ( )22
( ) 2 ln( )E x x TXρ ≤ + −  (11) 

 
In our problem formulation, the unknown 
parameter, which we estimate, is the redundancy 
θ , the number of secondary distributions. To 
obtain the Fisher information of the redundancy 
parameter ( )J θ , we note that the Fisher 
information ( )J X  can also be written as  
 

2

( ) ( ) ln ( )J X f x f x dx
x

θ θ
∂

= − −∫
∂

 
  

  (12) 

 
The Fisher information for the redundancy 
parameter  

( )J θ = 
2

( ) ln ( )f x f x dxθ θ
θ

∂
− −∫

∂

 
  

    (13) 

Further, since ln ( ) ln ( )f x f x
x

θ θ
θ

∂ ∂
− = − −

∂ ∂
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x
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θ
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∂ ∂
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     (14) 
which implies ( ) ( )J J Xθ =   (15) 
The Cramer-Rao gives a lower bound on the 
estimation of variance of an unknown parameter. 
For a random variable X with mean µ  and 

variance 2σ , 
 

( )
12

J X
σ ≥ ,    (16) 

 
with equality if and only if X is 2

( , )N µ σ . 



The inverse of the Fisher information given by 
( )1/ J X is the Cramer-Rao bound. The Cramer-

Rao inequality places a lower bound on the mean 
square error of an unbiased estimate of X given 
by 2σ . Since ( ) ( )J J Xθ = , 
 

[ ]1 2
( ) 2 ln( )2 J x Tθ

σ
≤ ≤ + −   (17) 

 
The Cramer Rao bound on the error in estimating 
the redundancy θ  for the case of a primary 
Poisson distribution and a single secondary 
normal distribution is thus given by 
 

[ ] ( )
1 1 2

2
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σ
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  (18) 

 
4. Results 

 
We now show the significance of (18) 

in establishing the bounds of error in redundancy 
estimation as a function of the expected network  
lifetime. We calculate the variance of 

( )p xX from (11) as 
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     (19) 
where 

1 2
ln( )1 2K T

T

π

τ

−
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2
1

2 2
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K
K
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−
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                                (20) 
 
Evaluating (19) at the support of x from (9), the 
bounds on the error in estimating redundancy are 
as follows, 
 

( )
21

4 2
e

J
σ

τ
θ

≤ ≤              (21) 

 
Let τ be a fraction α of the desired network 
lifetime T. We show that the error bounds exist 
value as long as α ≤ constant c1. For c1 ≤ α ≤ c2, 
bounds may hold true depending on designed 
network lifetime T. For α > c2, there is no upper 
bound on the error information, i.e. the error in 
estimating the redundancy is infinite. These 

bounds are illustrated as shown in Figure 1. The 
concentric circles represent the areas where the 
bounds exist for corresponding values of T and 
α. As seen from Fig. 1, the circles are plotted in 
increasing order of desired network lifetime. We 
see that with an increase in network lifetime, the 
upper bound of the error in estimating the 
redundancy keeps decreasing. Since the lower 
bound in (21) is a constant, this implies that the 
error bound gap decreases for higher desired 
network lifetime. This can be intuitively 
explained as follows: For a larger desired 
network lifetime with given number of nodes, we 
need to maintain a lower value of redundancy in 
the deployment region. A lower value of 
redundancy translates to lesser number of 
‘awake’ nodes covering the deployment region at 
any given time instant, thus increasing the 
network lifetime. Conversely, for lower desired 
network lifetime,  higher number of nodes can be 
made to cover the deployment region by staying 
‘awake’ for longer time intervals leading to a 
higher redundancy. Thus, the error in estimating 
a lower value of redundancy (higher network 
lifetime) is smaller than that in estimating a 
higher value of redundancy (lower network 
lifetime). Numerical results from simulating (21) 
for different desired network lifetimes T, shows 
that for  τ ≤ 0.7, the error is bounded. The upper 
bound of error for T =1000 hours and 100 hours 
are close and shown as overlapping circles (τ ≤ 
0.01). The next larger circle shows the error 
bound for T =10 hours with τ ≤ 0.03. The shaded 
region in Fig.1 represents the value of lower 
network lifetimes for which the error bounds 
may not be satisfied due to decrease in T. For 
extremely low value of desired network lifetime, 
the error bounds for redundancy estimation are 
not satisfied, implying that the error in 
estimating redundancy is infinite. Fig.2 shows 
the upper bound of error estimation as a function 
of support of the random variable representing 
the node distribution for 1-redundancy with T = 
5 hours. We see that for increasing lower limit of 
the support, the error in estimating the 
redundancy increases due to the inverse 
dependence of support on T.  
 
5. Conclusions 
 
The paper presented an analytical model to 
estimate the redundancy in a randomly deployed 
WSN without the use of location information. 
We illustrated the redundancy calculation 



                                                             
Fig.1. Interdependence of network lifetime 
and error in redundancy estimation for 1-
redundancy. Higher network lifetimes 
correspond to lower redundancy and hence 
lower error in estimating redundancy. For 
the converse case of lower network lifetime, 
the error in redundancy estimation is higher. 
 
approach and obtained the bounds on the error in 
estimating the redundancy for 1-redundancy in a 
randomly deployed WSN. We also showed the 
mutual dependence of network lifetime and 
redundancy in node deployment. These results 
can be used to design efficient sleep scheduling 
mechanisms to improve network lifetime by 
selectively controlling the density of ‘awake’ 
nodes in the deployment region. Further, the use 
of redundancy information can be employed to 
increase the reliability of sensing operation for 
regions of high-interest phenomenon that require 
larger number of sensors to accurately sense the 
environment. Our future work would involve 
analyzing the redundancy problem with varying 
degrees of redundancy and different node 
distributions. A simulation model to obtain PDF 
of nodes from a randomly deployed WSN and 
then estimating the bounds on the error in 
redundancy would be the next step in this 
research.  
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